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A one-parameter family of partition functions is considered which for zero 
value of the parameter r reduces to the spherical model of a ferromagneto 
The model for r > 0 is closer to the usual discrete lattice spin model of a 
ferromagnet than is the spherical model. The first four terms in r of the 
limiting value of the partition function are calculated above and below the 
criticaltemperature for arbitrary interactions using the saddle point method 
to calculate certain correlation functions for the spherical model. These 
calculations indicate that the critical temperature is independent of r for 
small r and certain interactions. 
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1. I N T R O D U C T I O N  

One of  the ou ts tanding  problems in theoretical physics is unders tand ing  
phase transi t ions.  For  a ferromagnet,  such as iron, the problem is to explain 
the fact that  when it is placed in an  external magnetic  field it becomes 
magnetized, bu t  when the field is removed, then above a certain critical tem- 
perature Tc the magnet  loses its magnet ism but  below Tc it retains it. The key 
to the solut ion of  this problem is the evaluat ion of the par t i t ion funct ion for 
the system. For  a now commonly  considered lattice spin model  of a ferro- 
magnet ,  the par t i t ion funct ion is 

Q~(v, h) = ~ exp ~ pij/z~/zj + h /~ 
{/z} t d  = 1 1 

where N is the n u m b e r  of  sites in the lattice; v = J ( k T )  -1, where J > 0 is a 
magnet iza t ion  constant ,  k is Bol tzmann ' s  constant ,  and  T is the absolute  
tempera ture ;  h is the external magnet ic  field; p~j = p(lr~ - rj]) >t 0 is the 

1 Part of this research appeared in the author's doctoral thesis, c3~ 
2 Department of Mathematics, University of Wisconsin--Madison, Madison, Wisconsin. 
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interaction between two lattice sites r, and rj in space;/z, is a spin variable 
assuming the values + 1 ; and ~ , )  denotes the sum over the 2 n possible spin 
configurations tz = (/zl,...,/~N). 

While QN(v, h) is jointly analytic in v and h for all N, if we take the so- 
called thermodynamic limit 

-~b/kT = lim (l/N) log On(v, h) 

where ~b is the free energy" per site, we may expect nonanalyticities, particularly 
on the line h = 0. A phase transition point is defined to be any nonanalytic 
point of this limit. 

The evaluation of  the partition function is difficult and there are just a 
few cases for which it has been evaluated exactly, corresponding to special 
choices for the interaction p. For example, in this notation, the Curie-Weiss 
model corresponds to p~j --- 1/Nand the Ising model to 9~j = 1 if [r~ - rj] = 1 
and 0 otherwise. As is known from the Ising model, the difficulty in evaluating 
the partition function increases immensely with the space dimension. 

In 1952 Kac and Berlin (1) introduced a mathematical variation of a 
lattice spin model called the spherical model. In it the sum over configurations 
~t~), which is the sum over the vertices of a cube in Ndimensions, is replaced 
by the integral over a sphere passing through these vertices. Thus the discrete 
variables (tzl ..... tzN),/z~ = _+ 1, i = 1,..., N, which satisfy the condition 

N ~ /zt 2 = N 

are replaced by continuous variables (xl ..... xN), where the x, are constrained 

to lie on the N-dimensional sphere with radius V'N: 

N 

~ x ~  2 = N  
i = 1  

With this modification the partition function Qx,.(v, h) becomes 

Q~c(v, h) = exp p~jx~xj + h x~ dcJ.r 

where d~./~ represents the surface element of the N-dimensional sphere with 

radius VN. 
By using the saddle point method, Kac and Berlin evaluated this 

partition function for the Ising model in one, two, and three dimensions by 
a method essentially independent of dimension. They found that there is 
no phase transition in one and two dimensions, but in three dimensions there 
is one. 
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Recently Kac suggested investigating the following modified spherical 
model. The last partition function is replaced by 

QN(V, h, a) = X~x~2=u exp ~ ~. 1 p,yx~xy + h x, (1 + axu 2) d~r./'~ 

(1) 

where the weight function ~ (1 + axk 2) has been introduced. Here ~ is a 
positive real number. This weight function has its maxima at the 2 N points 
(+ 1, + 1 ..... + 1), which are the points tz~ that were summed over in the 
original discrete partition function. Thus it will be closer to that partition 
function but can be investigated by similar techniques to those used in 
evaluating the spherical model partition function. 

Mathematically, the problem is to evaluate the thermodynamic limit of  
the partition function 

q(v, h, ~) = lim ( l /N) log QN(V, h, a) (2) 
N ~ o O  

We have conjectured (2) for h = 0 that if the spherical model (a = 0) already 
exhibits a phase transition, then for sufficiently small ~ > 0 the modified 
spherical model also exhibits a phase transition, and furthermore that the 
phase transition point vc where the limit is nonanalytic is independent of% at 
least for ~ sufficiently small. In this paper the limit for general p~j is expressed 
as a power series in ~ and the first few terms are calculated explicitly. The 
results agree with the above conjecture. 

A difficulty occurs in calculating 

lim ( l /N) log aN(v, o, ~) 
N--* co 

directly for v >/vc. We have calculated 

lira lim ( l /N)  log Qu(v, h, ~) 
1~--~ 0 N-.-~ ~o 

i.e., we first find the limit for nonzero h and then take the limit as h -+ 0. The 
result is the same because q(v, h, ~) is continuous at h = 0. 

Much intuition can be gained on the problem of  calculating the limit (2) 
by evaluating it explicitly for the cases p~j = 0 and p~j = 1IN. However, we 
will not go into this here and refer the reader to Refs. 2 and 3. 

2. F O R M A L  E X P A N S I O N  OF THE P A R T I T I O N  F U N C T I O N  
IN P O W E R S  OF = 

Since it does not appear that the partition function of  the modified 
spherical model is exactly soluble for general p~j, we now present a method 
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of  calculating the par t i t ion function te rm by te rm as a power  series in a. 
Expanding 1-[~ (1 + axk 2) in (1), we can write 

Q~(v, h, 0) = 1 + a ,=1 (x '2 )  + 2!,.jz'a'= 1- (x ,2xg)(1 - 8,y) 

+ ~ < x ? x ? x ~ ) ( 1  - a,j)(1 - ~ ) ( 1  - ~ )  + ... 
i,i,k = 1 

where ( ) are the "spher ica l  averages"  (B.10) and 8 is the usual Kronecker  
delta. One now introduces cluster functions (see Ref. 2 or  Ref. 3). Set 

x,( i)  = (x ,  2) 

and define the successive X's by the formulas  

(x,=x~=)(1 -- 3i~) = xl ( i )x l ( j )  + x2(i , j)  

(x,Zxj2xk2)(1 -- 8,j)(1 -- 8,k)(1 -- 3jk) = xl( i )x l (J)xl (k)  + x~(i)x2(j, k) 

+ xx(J)x2(i, k) + xa(k)x2(i,j)  

+ xa(i, j ,  k) 

One then has a rigorous identity 

QN(v, h, 0) = exp k-7. xk(il, i2 .... , ik) (3) 
|1,12, ... ,~ = i 

The  first t e rm is given by 

= N  xl( i)  = (x ,  2) = x, 2 
I=i 1=i Xi=l / 

since the integrat ion is over  the sphere ~ n  x 2  = N. By considering only 
periodic lattices (in one dimension,  sites on a ring; in two dimensions,  sites 
on a torus;  etc.), every site looks the same and (x~ m) = (x j  m) for  all i, j ,  m. 
Then  e lementary  calculations give 

N N 

xz( i , j )  = - N ( x l " )  and ~ Xa(i,j, k) = 2 N ( x l  6) 
~d=l l,],/c= 1 

Thus  

l log QN(v, h, a) a 2 ~a 
QN(v, h, 0) = ~ - 2- <x14) + ~ <x16) . . . .  

to the first three terms. 
This method  can be cont inued but  the succeeding terms are considerably 

more  involved. The  following method  is more  efficient for  the purposes  o f  
calculation. 
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Let r = l-If (1 + ~x~ 2) and write 

Qu(v, h, O) = _~ log@ > 

We use the cumulant expansion: 

1 
log(d ~162 = (log r + ~ <[log ~(x) - <log ~(x))] 2) 

+ 1 <[log ~(x) - <log q~(x))la> 

+ 1 {([log r - <log q~(x)>]4> 

- 3<[log ~(x) - (log r 2} +--- 

Then, using log ~(x) = ~ f  log(1 + axk 2) and the expansion 

log(1 + axk 2) = axk 2 - �89 ~ + �89 6 . . . .  

we can simplify the above expression, obtaining 

1 QN(v, h, a) 
log QN(v, h, O) 

= 1 tog<elO,~(x~> 

= _ <xl">(h ,  N )  
2 

where 

+ aa <xzS}( h, N) 
3 

<V42>(h'8N N ) ] +  a~[<xll~ N )  

375 

(V4V6)(h,N)]6N 

(V4Va>(h, N )  < Vs2>(h, N) ( V4a>(h, N)]  
8N 18N + 48N j 

(4) 

N 

Vm = ~ x~ ~ -- N(xlm>(h, N )  
1 

and we have written < >(h, N) to emphasize the dependence of the spherical 
averages on h and N. 

We now assume p is a general one-dimensional interaction. Then 

Pu = P(] r, - rJl) = p([i -- Jl)  (5) 
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We are assuming that the one-dimensional lattice we are now considering is 
periodic. Thus p(N - 1) = p(1) since the first and Nth  sites are next to each 
other, and in general 

p(k) = p ( N -  k), k = 1, 2 ..... N - 1 (6) 

Finally, assume that 

P(J) < 
] =  - c~o 

and let 

g(O) = ~ p(j)e 'j~ 
J =  - - o o  

Let 

1 (2~ dO 
vc = 2-~Jo g(O) - g(O) (7) 

There will be a phase transition for vc < ~ .  It now follows from Eq. (4), 
Appendix A, and the long and tedious calculations of Appendix B, that 3 

1 QN(v, h, ~) 
lim lim ~.log 
h~o iv--,o QN(v, h, O) 

3 09. 4 

- i + 5 ~  - - 3 . = - =  \ ~  Jo 2 :  - v g ( o ) :  ~ '  + "'" 

for v~<vc 

~ - 1 1 3 - 2 ( 1 - - ~ ) 2 ] r  l [ l s - 3 0 ( 1 -  ~ ) 2 +  1 6 ( 1 -  ~-c)8]~ 3 

-[I~-~5-105(1--~)2+ 112(1--~)~ -- 33(1 __~)4 
3 ~ [ 1  f 2~ e'"~ ~" 
: , = - =  \~Jo g ( 6 ~ -  ~(o)! 

12(i_~ ) ~ (i: ~ e,,,odO "~3 
- -: . = - ~ Jo gf~---e:fo)! 

v 2 | { 1  f z~ e',oao ~21 4 
4 ( 1 - ~ - )  ,_-~-~o \2-~.Io g<O))---g(O)} ]~ +"" 

for v >/v~ (8) 

3 s* is determined by (1/2 ~r) .fo z" {dO[[2s* - vg(O)l} = 1. 
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I f  the calculations are performed only for v ~< vc the limits can be found 
much simpler by first setting h = 0, but the calculations still become long 
and tedious at the sixth term. From Ref. 3 the fifth and sixth terms for v ~< vc 
a r e  

[ 1 8 9 -  60 ~" [ 1  f 2~ e ' " ~  0 ] ' ]~5 
L - - o o  

- - o o  

- - 4 0 ~  ~ N j  ~ 2s~Zvg(O ) /  + 3 6  ~ ~2=j ~ 2s-g-Zvg(O)] 
-- co nl,n 2 = -- oo 

X - - - - - -  o; 6 

From (8) we see that the terms in the series are analytic functions of v except 
at v = vo, provided, of course, that all the sums converge. This v~, defined by 
(7), and the saddle point equation 

1 (2~ dO 
Jo 2s* - vg(O) - 1 

are the same as for the spherical model. In particular, v~ does not depend on a, 
as mentioned at the end of the introduction. 

I f  the above limit were calculated in d space dimensions instead of one, 
then, as in the spherical model, each 1/2~r should be replaced by 1/(2r a, each 
j'o 2= by d integrals .fo 2~, and g(O) should be replaced by the multiple Fourier 
series g ( 0 ) =  ~j p(j)exp(iO.j), where the sum extends over the infinite 
d-dimensional lattice, and so on. 

It is now natural to ask whether the series given by (8) converges for 
sufficiently small ~. In general the answer is no. In fact, the coefficient of cd 
in (8) for v /> v~ may very well diverge. For  example, if 

1 g(O)-g(O) = ~ ~ ( 1  - cos nO) 
n =  1 I t  

then g(0) - g(O) ~ OL Hence v~ < m if r < 1 but 

[1 f2~ e,,~odO ~== 1 fz= dO 
\ ~ L  g(657g(0) ]  ~ J o  [g(O) - g(0)] = ~ = - - o o  

diverges for r /> �89 The other two coefficients of  ~4 for  v > vc diverge for 
r /> �88 and r >/ a z-. Even when there is no phase transition (v~ = oo) and the 
limit is given by the first part of (8) one might wonder about the convergence 
of  the series, for although each term is finite, the coefficients of a n increase 
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with n. Here  it is i l luminating to take the simplest possible example,  p~j = 0. 
Then the limit can be calculated explicitly and it turns out  tha t  the radius of  

convergence is 5 - X / ~  ~ 0.1, which is by no means  large. In  Ref. 3 we 
established the convergence of  the series for  some simple one-dimensional  
models  with no phase  transit ion, but  even these proofs  were not  easy. We shall 
deal with these convergence questions in subsequent  publications. 

A P P E N D I X A .  THE M A T R I X  FOR A GENERAL O N E - D I M E N S I O N A L  
INTERACTION 

For  a general  one-dimensional  interact ion p we had  [(5) and (6)] 

p~j = p(li - j [ )  for  all i , j  

p ( k )  = p ( N  - k), k = 1 ,2  ..... N - 1 (A.1) 

Because p satisfies these conditions,  it falls into a special class of  matrices 
called cyclic matrices r As a result all the eigenvalues and eigenvectors of  
(pij) may  be writ ten down explicitly. 

The  matr ix  of  eigenvectors is 

t 1 1 . - .  1 ~ 
r o  r i  �9 �9 �9 r N -  1 

ro 2 rl  2 - . .  r ~ _ l l  

l 
� 9  FN_I/ \ r ~ - ~  r~-~ N-1 

where rk = e 2~km is a roo t  o f  unity, and the eigenvalues are 

N - 1  

h~ = ~ p ( j ) e  2 ~ m N ,  k = O, 1 . . . . .  N -  1 
J=O 

We set p ( - j )  = p(j)  and rewrite Az as 

(N-I)12 

Ak = ~ p(j)e 2~'mn, k = 0, 1 ..... N - 1, N odd (A.2) 
j = - (3 / -  1)19. 

with a similar fo rmula  for  N even. By writing Ak in this last fo rm we have 
removed  the implicit dependence of  p(j)  on N ,  which came f rom the equat ion 
p ( j )  = p ( N  -- j ) .  

We also note  that  [Ak[ ~< ;~o for  k = 0, 1 ..... N - 1, so ~o is the m a x i m u m  
eigenvalue of  p(i  - j ) .  

The matr ix  A = ( 2 s I  - vp(i  - j ) ) -  ~ will be impor tan t  in the calculations 
in Appendix  B. Since p(i  - j )  is cyclic, so is the matr ix  ( 2 s I  - vp(i  - j ) )  and 
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hence A also, because the inverse of  a cyclic matrix is cyclic. Thus the elements 
aij of  A can be written 

a~j = p(]i - j ] )  = p~_j (A.3) 

wherep(k) = p(N - k) for k = 1, 2,..., N - 1. T h e n p ,  = p,_j = a~j can be 
calculated from the eigenvalues and normalized eigenvectors of ( 2 M -  
vp(i - j)). The result is 

1 N - I  e2~nlclN 

P" = N ~'=~'o 2-s =-~'k' i = V : 1  (A.4) 

A P P E N D I X  B. THE  C A L C U L A T I O N  OF THE S P H E R I C A L  M O D E L  
C O R R E L A T I O N  F U N C T I O N S  

1. We begin by reviewing the calculation of the spherical model partition 
function in a nonzero magnetic field, which is given by 

QN(V, h) = exp �89 ~ o(i - j)xtxj + h x, de,~ (B.1) 
~x~2=N L i , / = l  

We introduce the corresponding integral over all space 

O~(s, v, h) 

f) . . . .  exp - s  x~ 2 + �89 p ( i -  j)x~xj + h x~ dx~ ... dxn 
o o  i,j= l 

This can be written 

fo {s = [exp( - s r  2)] 
NX2 

Re s > �89 (B.2) 

=r e x p [ l v ~ p ( i - j ) x i x , + h ~ l  x,]dar} dr 

Changing variables by letting t = r 2, we have 

0.(s, h) 

:fo~~ l . _ (  e x P [ 2 ~ . P ( i - - j ) & x , +  h ~ x , ] d a . / i ) d t  
~2Vt  Jx~ x~= =t 

This is just a Laplace transform. By the Laplace inversion formula, 

• 
= 21ri&o_~ ~ e"tQN(s, v, h) ds 
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We now let t = N. Then  
~/-~ (~o+~ 

QN(v, h) = ---7 eS'O.s(s, v, h) as (B.3) 
~ l  JSo -io0 

Evaluating the Gaussian integral in (B.2), we obtain 

- ~ao) 7.. ~ - s  - vaN_ 1)1 

where Ao,..., AN-~ are the eigenvalues o f  (p(i - j ) )  given by Eq. (A.2), A -1 is 
the matrix (2M - vp(i - j ) ) ,  and h is the N-vector (h,..., h). Since I = (1 ..... 1) 
is the eigenvector o f  A -  ~ with eigenvalue 2s - vAo, it is an eigenvector o f  A 
with cigenvalue 1/(2s - VAo). Therefore,  the quadrat ic  form 

1 N 
(Ah, h) = h  2 -  (1 ,1)  = h  a -  

2s - VAo" 2s - VAo 

Thus  

(2~) N 11t~ r Nh ~ 1 
0f ( s ,  v, h) = (2s - vAo) -.- ( 2 s ,  vAN_l)] exP[2(2s ----'VAo)] (B.4) 

Substituting in (B.3), we obtain 

Q~(~, h) 

[N(2~r)Ula/2r"o+'~~ l U-~ h 2 
- 2--N~--o l~ - YAk) + 2(2S = VAo)]} ds �9 ri &o-~| = 

The  term in the exponent  has a saddle point  sN given by 

1 h 2 
1 - ~ 2s• - yak (2@ -- VAo) 2 = 0 (B.5) 

Choosing the path  o f  integration to  go through the saddle point,  not ing that  
( l / N )  ~ 2 o  x log(2s - yak) and ( l /N)  ~ 2 o  1 [1/(2s~ - ~a~)] are Riemann sums, 
and letting s* = limN~ ~o @, we can evaluate the integral by the saddle point  
method,  with the result 

1 q(v, h) = lim _~ log QN(v, h) 
N-*oo 

1 1 (2,~ h 2 
= ~log2~r + s* 2(2"~r)3o log[2s* -- vg(O)] dO + 212s* vg(0)] 

where s* is determined by 

1 (2,~ dO h 2 
1 = 2-~3o 2s* - vg(O) + [2s* - vg(0)] 2 (B.6) 

and 

g(O) = 2 P(J)e'J~ (B.7) 
J =  - c o  
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There will be a phase transition for the interaction p ( i - j )  if 
S~ ~ {dO/[g(O) - g(0)]} < ~ .  The saddle point equation (B.6) determines s* 
as a function of  h, s*(h). Note that s*(h) is an increasing function of  h and 
s*(h) > �89 for all h > 0. Therefore limh,.o s*(h) exists. Let 

1 (2~ dO (B.8) 
vo = ~ Jo g(0)  - g(O) 

and consider two cases: 

I. v < vc. Then from (B.6) we see that limh-.o s*(h) # �89 
II. v /> vc. Then from (B.6) we see that limh~0 s*(h) = �89 

Therefore from (B.6) and the above 

h 2 (01, - v < v o  lira = (B.9) 
h-o [2s* - vg(0)l 2 (vdO, v >>. vc 

2. We now show how to calculate the spherical model correlation func- 
tions. I f  F(xl ..... XN) is any function of  xl ..... xu, we define 

<F(xl .... , x~)}(h, N) 

v p(i --j)x~xy + h x, da./-~ = F(xa .... , xu) exp ~ t,j=l 
N X t ~ 2 = N  

x { f s : . ~ = N  exP[2 ~.J=~ p ( i - j ) x , x j + h  ~ x , ] d ~ . r ~ )  -x (B.10) 

and 

<F(x,.~.., XN))(h, N)  

x exp - s  x~2 + 2 ~ p(i - j )x ,  xj + h x, dxl ... dxN 

x ... exp --s xk 2 + -~ ~ p(i -- j )x ,  xj 

}' + h xi dxl "" dxN (B.11) 
1 

Then, similar to (B.3), we have 

<F(xl ..... x~)>(h, N) 

l l ;  80+t~176 ) I f  sO +~cc N s  ~ ~ -1 

~-- L "  80- - 'C0  e Qlv{F(Xl '~,xN))(h,N)dsjk .]so_i~oeNSQNds (B.12) 
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I f  we write (B. 11) as 

(F(xl,."LY.., xN))(h, N )  

= { f ? "" f F(xl,..., x~) exp[(h, x)] exp[-�89 x)] dx~ .'. dx~} 

• { f : ... f exp[(h, x) ] exp[-�89 ~x, x)] dxl ... dx~,} - ~ 

and make the change of variables 

y~ = x ~ -  t 

where t = (t,..., t) is given by 

(B.12') 

o r  

N 

t = h  ~ a i s ,  for i =  1 .... ,N,  where A = (a~s) 
j = l  

From (B. 13) 

Since 

we see that 

(F(xl,.'ZT.., xN))(h, N )  = ( F ( y l  + t,C.~., YN + t))(O, N )  

Writing ( ) ( N )  for ( )(0, N) and replacing the y's by x's, we obtain 

(F(xl,.~.., xN))(h, N )  = ( F ( x l  + t,..., xz~ + t ) ) ( N )  (B.14) 

3. Now consider F(x~ ..... xN) = xl m, where m is a positive, even integer. 
The method for calculating the correlation function for a single variable is 
already known, (1) but is included here for the sake of  clarity. Then 

(x~m}(h, N) = ((x~ + t)m}(N) = z-" k ] k  tk(x~ k ) (N)  
k = 0  

t------.., {0, k odd 
( x ~ - k ) ( N )  = (m -- k - 1)!! (x12)(~-k)/2(N), k even 

w h e r e ( m - k -  1 ) ! ! = ( m - k -  1 ) ( m - k - 3 ) . - . 5 - 3 . 1 ,  then 

(x l~) (h ,  N )  = k (m - k - 1)!! tk(x12)(m-~)I2(N) (B.15) 
O ~ k ~ r n  

e v e n  

t = ~ h ~  a~j= h(Al, 1 ) =  h 
�9 - 1  2 s  - -  VAo 

(B.16) 

t = A h  (B .13 )  
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and 
h 

lira t = (B. 17) 
N~ ~ [2s - ~g(0) 

Since (x12)(N) = (&2)(N) for i = 1 .... , N because A is cyclic, 

,'--" 1 < ~ "~- ' )  1 ~ log 0N(s, v, 0 ) ( x 1 2 ) ( N ) = ~  xt 2 (N) = NOS 

From Eq. (B.4) this is 

"-" = 1 N-1S, 1 03.18) (xl2)(N) 
~ 0  2s - ~ 

Substituting F(x l  .... , x,,) = x l  m in (B.12) and using (B. 15) gives the formula 
for the spherical correlation function 

i 
S O + f m  

e ~ t k ( x l ~ ) ( ' ~ - k > t ~ ( N )  ds 
~SO-?,co < x ~ > ( h , N ) =  ~ k ( m - k - I ) ! ! "  

ON~Nm 
k e v e n  

SO + 1 ~ 1 7 6  

eN~QN ds 
, ]  SO - -  , i , ~  

As before the exponent in exp{N[s + (l/N) log 0h,]} has the saddle point sN 
given by (B.5). Therefore 

<xI"~)(h, N) 
( m ) ( m _ k _  1)!!(  h ) ~/1 N - l |  ~ 1 ] (m-~''z 

k even 

where we have substituted for t and <x~)(N) from (B.16) and 03.18). Then 

~(~,  h) 
= tim (xlm)(h,  N )  

N--~ eO (m) ( 
o ~ , .  " ~g(O)!  ~2,~3o 2s* = ; g ( O ) !  
keven 03.19) 

where s* is determined by (B.6). It follows from (B.6) and (B.9) that 

1 r 2~ dO f l ,  v < v ,  
lira T-- [ = ~ 03.20) 
h~o ,~ra o 2s* - ,g(O) vJv, v >1 ~'o 

Finally passing to the limit as h -+ 0 in 03.19) and using (B.9) and (B.20), we 
obtain 
/Zm(V ) = lira ~,,(v, h) 

h ~ O  

IL(lo: ( _ ( m - k - 1 ) ! !  1 -  -- . i> vo 
(B.21) 

L(m - 1)!I, ~, < ,~ 
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For example, 

The formulas for the first four nonzero t~,~(v), obtained from (B.21), are 

t~2(v) = 1 all v 

tL4(v)= 2 1 -  v]  ' v >l v~, 

~15, v ~< v~ 
(B.22) 

/~(v) 
16 115 - 30 - + - v >I v~ 

f105, v ~< vc 

t~8(v) = 1 1 0 5 -  420(1 _ _ ~ ) 2 +  448(1 _ _ ~ ) 8  1 3 2 ( 1 - ~ ) ' ,  v>~v~ 

Except for t~2(v), each/~(v) shows a break in analyticity at the phase transition 
point v~. We have t~2 --- 1 necessarily because the spherical moments are 
computed integrating over the sphere ~ xk 2 = N. Also, for each m,/Xm(V ) -+ 1 
as v -+ oo, corresponding to perfect order in the magnet at zero temperature. 

4. Pair correlations. Finally we consider F(xl,..., x•) = x~xj ~, where 
m and n are positive, even integers. Then, similar to the above, 

(x?'x?)(h, N) = ((x, + Om(xs + t)")(N) 

= (xr-~x'~-')(N)tk+* (B.23) 
/r / = 0  

In order to compute the limit as N - +  co and h ~ 0 of (V~2)(h, N)/8N in 
Eq. (4) we need to calculate (x~4xj4)(h, N), i.e., the case m = n = 4. Although 
this is the simplest case, it is highly nontrivial and the remainder of the paper 

is devoted to its calculation. Since k + 1 must be even for (x~-kx~-Z)(N) to be 

nonzero, the terms that contribute to (x~xj4)(h, N) are 

(x~xj)(N), (x,2xj2)(N), (xiZxj3)(N), (x~4xj~)(N) 

(x,3x,,)(N), (x,4x~2)(N), (x,xj3)(N), (X,2Xj~)(N) 
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plus 

(x,~)(N),  (x,~)(N),  (x~) (N) ,  ( x ~ ) ( N)  

which we have already computed.  

F rom  (B. 12'), a~ = (x~xy)(O, N)  = (x~xy)(N) and using the formula 

(x~ * ~ x~">(N) = (xi"W" xN> written individually 

l~airlngs l~alr s 

for  Gaussian distributions with mean zero, we find 

(x~2x~2) = a~ia~j + 2a~, (x~x~ ~) = 9a.a~ay~ + 6a~ 

(x~xy ~) = 9a~a~ + 72a.a~ay~ + 24a~. (B.24) 

(x~ax~) = 3a.a~y, (x~%p) = 3a~a~ + 12a~. etc. 

I t  follows f rom (A.3) that  we can write a~ = p ( l i - J l )  = P~-~. where 
p(k) = p(N - k) for  k = 1, 2,..., N - I. 

Then  the above formulas simplify to  

(x~xy) = Pi- t, 

3 ~ 2 9po p~-j + (x~ xj } = 6p~a-j. 

(x~xj )  = (x~xj a) = 3pop,-j, 

(x~2xj 2) = po 2 + 2p~_j 

= 7 2 "  2~2  (x~'xj 4) 9po" + t'o e,-~' + 24p~_j 

(x~xj  2) = (x~2x~ 4) = 3po a + 12pop~-j 
(B.25) 

and also (x~ m) = (m - 1)..i,o' ~ v v -~/2. Now if we let the bar  denote  the inverse o f  
the tilde and let/~ = t 2, we have 

N 

(V4~)(h, N)  = ~ (x,4x~)(h, N)  - N2(xt4)2(h, N) 
i , j = l _  

N 

= ~ (x,%j')(h, N)  - NZ(('~l~)(h, N))" 
i , j = l  

~ ( 4 ) ( 4 )  = (x  m- ~x~- ~)(N)/~ (k + o/2 
k=o1=o k l ~.s=l 

11 ~ (4-~/2. ~/2] ~ 
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from (B. 15) and (B.23). Expanding these sums, substituting from (B.25), and 
simplifying, we obtain 

(V42)(h, N) = 9N2(po 4 - P o  ) + 36N2(po2t z2 -~--~2) 

+ U2(t~ ---~ _ 7 2) + 6N2(poZtZ 2 -po2lZ 2) 

+ 36N2(po31~ - po2Pol~) + 12N2(po/z a - po/ztz 2) 

+ 72N~po2p,~ 2 + 24N~p- -~  4 

+ 144N~_,po2p,/z + 9 6 N ~ p . 3 / z  
T~ lq, 

+ 72N ~ p,~2lzz + 16N ~ p,d~ a 

+ 144N~pop,2 / z  + 96N~_,pop,/z 2 (B.26) 

~-(N-1)r and N is odd. where ~n means ~n=-(N-1)/2 
From (A.4) 

1 Nx_.- ~ e 2~"km 
P,  k_@ 0 2s - vAk 

(B.27) 

Substituting for Ak from (A.2), we get a Riemann sum. Then under suitable 
conditions on p, 

1 (2~ e ~~ dO 
uli~rn~ P" = 2-~Jo 2s - vg(O) (B.28) 

where g(O) is given by (B.7). Since/z = t 2, f rom (B.16) and (B.17) 

(~sh_ )2 (B.29) 
/~ = vA ~ 

and 

(2 h ))2 lira t~ = _S vg(O (B.30) 
N ~ c o  S 

Since the bar is the inverse of  the tilde, it follows from (B.12) that  

( ' 30+  i ~ 1 7 6  

e Ns QNpotP~rls ds 
potp~rt zm = Js~176176 (B.31) 

fS sO+i~ eN ~ Q zr ds 
O--ioo 

where l, r, and m are nonnegative integers. If  we let 

f ( s )  = s + ( l / N ) l o g  ON (B.32) 
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and set f ' ( s )  = 0, we have as before the saddle point &v determined from 
Eq. (B.5). By the saddle point method 

po~p,rtzm ~ pO'p,TtZ~[s=~N 

"1 s+-~ 1 \ ' / 1  N-t e2~,.klN ] .{ h VAo) 2m (B.33) 

from (B.27) and (B.29). 
Then, using (B.28) and (B.30), we have, similarly to (B.19), 

lira po~p~'12 " 
N.-+ oo 

(1  re, dO ~ ' [ 1  (z• e '~~ ~r( h )2,~ 
(B.34) 

= \ ~ 2 o  2s* - pg(o)! \2~Jo 2 s ~ = ~ ( o ) ]  ~,2s* - pg(0) 

with s* determined by (B.6). 
Letting h -+ 0 gives, similarly to (B.21) [see footnote preceding Eq. (8) 

for the condition determining s*] 

lim lim po'p,~tz m 
h -.-r 0 N ~ o o  

({ 1 ( 2" e ''~ ~'~,,, 
/ t ~ J o  2s* ---=-~(o)] o , <. ~o 

I pJ ( 1 (2. e ''~~ dO 'l" {1 - ~'l m (B,35) 

I. 7~r t ~  h g-(6=-~o~i t p i ' ">-" p~ 

Using this result and (B.26) gives [with the same condition for s* as in (8) and 
(B.35)1 

lim lira 7th + 8th + lOth + l l th  + 13th terms in 
h~o N-+~o 8N ] 

"%'~176 i/1 (2= e,-Od__00 ~2 + 3 '~ ( l  f*'" #"~ '~' 
9 

"l) ~ PC 

9Vc2 ~ (1 i"2" e,~OdO ]2 1 = (1 ( 2" e"~~ ]" 

= +121 [1 -~ ' i  p31 ~] 2 (1 (2= e,,OdO ,iz (B.36) 
n: - ~o \ ~  Jo g(O)) 22 y(O) ] 

1 (1__~)2  ~ {1 (2" ei,~odO ~2 

+ 18~ 1 - n=-~ ~ g (0 ) -g (0 ) ]  ' v >1 v~ 
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The second of  the above expressions simplifies to 

9 | {1  ( 2'~ e,~OdO '~2 

+ "~ ,~=- o~ k2-~.]o g(O) - g(O)] ' v >1 v~ (B.37) 

The  ninth, twelfth, and four teenth  terms must  be t reated separately.  The  
ninth te rm in (V42)/SN f rom (B.26) is 

/ (N - 1)12 ) 

18 ~_,poSp.l~ = 18poZ( (~N Pn /Z  
n n =  - - I ) / 2  

But 
( N  - i ) / 2  ( N  - 1 ) / 2  N 

p ,  = ~ p ~ j =  ~ a,j for  i =  1 ..... N 
n = - ( N  - 1 ) 1 2  i - ] = - ( N -  1 ) I 2  3" = 1 

1 u 1 
ai ] = = N', 1 2 s - v A o  .p .= 

because o f  the cyclic nature  o f  (a~j) and by (B.t6). Since 1/(2s - VAo) = 

t~l/2/h, then 18 ~,~poZp,d~ = (18/h)po2tZ 3/2. By (B.34) 

18 2 a/2 [ 1 t 'z~ dO_ ]2 h z 
l i m  --~-P0 t ~ = 18(2-~J o 2s* - vg(O)] [2s* --~g(0)]  3 (B.38) 

and we see we cannot  yet take the limit as h ~ 0. The twelfth and four teenth  
terms are handled the same way, and we find 

l im ( 9 t h +  1 2 t h +  14th t e r m s i n  (-~--~)-) 
N - - ~  oo 

/ 1 r ~ dO_ ~2 h 2 h6 
= 18~2-~J o 2s* - vg(O)] [2s* - ug(0)] 3 + 2 [2s* -- vg(0)] 7 

[ 1 ;,2,~ dO ) h 4 
+ 1212-g~J 6 2s* Z-ug(O) [2s* --~g(0)]  5 (B.39) 

Substi tuting 

1 (2~ dO h 2 
2-g~Jo 2s* - vg(O) = 1 - [2s* - vg(0)] 2 

f rom (B.6), this last expression becomes 

h 2 h �9 h 6 
18 [2s* - vg(0)] 3 -- 24 [2s* - ug(0)] 5 + 8 [2s* - vg(0)] 7 (B.39') 
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The above calculation can also be done by using (B.28) and noting 

( n -  ,)lz ~o 1 ~2n e ~n~ dO 

N-, oo oo " ~  2s  --  vg(O) n = - ( N - -  1 ) / 2  n 

1 (2.  ~(0) a0 1 
= ~ Jo Z s - Z  ~'g-(O) = 2s  - vg(O) 

We must now deal with the first six terms in (B.26). Since they are 
preceded by N 2 and we are only dividing by N, the terms of  order 1 in 
- -  -S-~2 
P0 ~ - Po ,  etc., must vanish with terms of  order 1/N contributing to the limit. 
This is indeed the case. To calculate the terms of  order 1 IN ,  however, we must 
do the saddle point calculation to the next higher order. 

In (B.31), setting r = 0, using (B.32), and changing the contour 
(So - ioo, so + i v )  to F, the path of  steepest descent through sN, we obtain 

f r  e m ( ~ o l ~  '~ ds 
poZt, '~ = (B.40) 

y e  Nr(s) ds 

Substituting from (B.4) into (B.32), we obtain 

1 N - 1  h z 
1 k~__ ~ log(2s - yak) + 2(2s vAo) (B.41) f ( s )  = E l o g 2 , r + s - ~ - ~  _ 

Along F, Imf ( s )  = 0 and maxsevf(s) = f ( s N ) .  Changing variables by letting 

- w 2 = f ( s )  - f ( s N )  (B.42) 

and substituting from (B.41), we obtain 

lh2 1 ( 1 ) 
- W  2 = S - S N  + ~  2sN--vAo 1 + [2(S--SN)/(2SN--VA0)-- 1 

27V k__~D log(1 + 2aN v a J  

Expanding the right-hand side in a power series, we find 

- w  2 = [ 2h =. + 1 ~-*~ _1 ] (s S N )  2 

t.(2s,, - ~ao) ~ -~ ~ o  (2s~ ~a~)~ 

[[(2&r 4h2 4 1 n-  1 
- ao) ~ + ( z , ,  -1 _ + ... (B.43)  

where the coefficient of  s - sN vanishes by (B.5). 
Let 

h m 
r~, = (2s~ -- VAo)" (B.44) 
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and 

1 ~-lx_, 1 
Am Xr ~o (2s~ - ~a,) m (B.45) 

Then 

and 

Let 

and 

w 2 = -(2r2a + Az)(S - sN) 2 + (4%, + 4Aa)(s - sN) a . . . .  (B.46) 

w = -i(2r2a + A2)I/2(s - su)[1 2r2~2r2a ++ {AaA2 (s - sN) + ""] (B.47) 

y = -i(2r2a + A2) 1/2 

D = (r24 + -}Aa)/(2%a + As) 

Inverting (B.47), we obtain 

w w 2 
s = sN + ~ + 2 D - ~  +. . .  

ds 1 4D 
~ = ~ + T w + . . -  

(B.48) 

and 

(B.49) 

(B.50) 

(B.51) 

1 
ds/dw = 7 - 4Dw + ... (B.52) 

To complete the change of variables from s to w in (B.40) we need to solve for 
Po and t~ in terms of w. Substituting (B.50) into/z = h2/(2s - V;~o) 2, Eq. (B.29), 
and simplifying, we find 

81z~I2hY 2 D)  w2 + ""t (B.53) 

where 

4/Zo [12#o 
~ = ~ o  1 - W w +  y h ~  

~o = ~[sN = h ~ / ( 2 s ~  - Vao) 2 (B.53') 
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From(B.42) and (B.32) 

1 1 
w 2 = - ( s - s u )  + _ ~ l o g O N l ~ - ~ l o g O u  (B.54) 

Differentiating both sides of (B.54) with respect to w, we obtain 

ds 1 ~s log QN ds 
2w = dw N 

From(B.4) 

1 N - 1  h 2 
1 (3 log (~N = ~--o 1 
N ~s N = 2s - vh--------~ + (2s - vAo) 2 

By (B.27) and (B.29) 

(B.55) 

(B.56) 

~V b-s log Qu = po +/~ 

Substituting in (B.55) and solving for Po, we obtain 

2w 
Po = 1 - i~ + ds /dw 

Making the change of variables w 2 = f ( s u )  - f ( s )  in (B.40), we find 

(8.57) 

| [exp(-Nw2)]po~l~m(ds/dw) dw 
poZ~ m = .,_~o ( B . 5 8 )  

because w goes from - o e  to o% as s traverses the path I2 [Eq. (B.47)]. Sub- 
stituting in (B.58) for Po using (B.57) and substituting for/~, 1/(ds/dw), and 
ds/dw from (B.53), (B.52), and (B.51), a tedious calculation and integration 
yields 

1 /Lore(1 --/Zo) I-2 
po'~" = ~o~'(I - ~o)' + ~ ~ -  

• {12/Zo~/2(1 -- ,U,o)D[/p,o -- m(1 --/Zo)] + 
6[m(1 /Zo) l/zo]t~o(1 /Zo) 

h 

+ 4 [ / ( / -  1)/Zo 2 + rn(m - 1)(1 -- /~o)2]t~o _ 8ml/~o~(1 - /~o) 
h h 

+ 4~2ltz~/2[(l - 1)/Zo - m(1-/Zo)]+ 74hl(l - 1)'~ + ..- (B.59) 
) 
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We can now calculate the first six terms in (B.26) using this formula: 

- - - 2 - ~ 2  8 (1- /Zo)2 (4 3 472tz~/2 ) 
P o 4 - P 3  = ~  h--'~ " - ~ - - +  + 7 %  + " "  

- - 2  2 tZo2 [4 tZo(2~-  1) 2 
Po2t .2 - Pot* = ~'~-~2 

__ __ 32/Zo 5 
i~ ~ -- t,22 = Nh27------- ~ + ... 

po21 ~2 -- Po21 ~2 - -  
16 tz~ [ 2/~~ t z ~  h72 

+ 472/z~/2(2/Zo - 1) + 7%] + "'" 

4-  72/Zo1/2(1 - tZo)] + ... 

(B.60) 

4 t~o(1 - t~o) [8 3 
Po3t z - Po 2 Pot* = ~"  h ~  ~ 4/~~ - -  + 272t~o~/2(3/~o - 1) + 74h I + ... 

8 /z~ [~-~ ( 1 -  2 /zo)-  72t~/2] + . . .  potz3 _ pop. [~2 _ N h 7  2 

Substituting Eqs .  (B .60)  in (B .26)  produces astonishing cancellations and w e  
find 

sum of first six terms in (V42)  16t~~ 24t~Jz 8N - ~ + ---h--- + 975 (B.61) 

From (B.48), (B.44), and (B.53'), this is 

16tZo 5 24tz~/2 /2tLo 3/2 ) 
- h(2#g/2 + hA2) + ~ - 9 ~ T  + As  

Letting N - +  c~ gives 

lira 
N--~ oo 

sum of frst  six terms in ----~--] 

( h 
= - 16 2s* - vg(O)] 

• h 2 2s*  - .g(0)  + h ~ J  o [2s* - .g(O)s 
M h 2 

+ 24 - 18 [2s* - vg(0)] 5 [2s* -- vg(0)] a 

1 r 2~ dO (B.62) 
- 9 ~ J o  [2s* - vg(O)] 2 
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where we have used the fact that A2 [Eq. (B.45)] is a Riemann sum and s* is 
determined by (B.6). Combining this result with (B.39'), we find that all the 
"dangerously divergent" terms miraculously disappear, leaving 

1 (2~ dO 
- 9 ~ 3 o  [2s* .2 ~,g(O)]2 

+ [ 8 ( 2 s ,  h ]7 1 ['2~ dO l ~g(o)] N2o [2s* ~-;g(O)12j 
{ ( h ) a  1 t'2~ d0  "~-1 

x 2 2s* - vg(O) + h2-~J o [2s* - vg(O)]2J 

Letting h -+ 0, this becomes [with s* determined as in (8), (B.35), and (B.36)] 

1 ~2~ dO 
- 9 2-g~Jo [2s* - vg(O)] v v <. vc 

v2 ff~Jo [g(O) - g(O)] 2 + ~ 1 - 2"~Jo [gO) - g(O)] v v ~> vc 

Combining this with (B.36) and (B.37), we find that the first terms cancel by 
Parseval's identity, yielding (with s* determined as above) 

lim lim (V4~) 
~ o  iv-.., ~ 8N 

[1 ~2,~ e ~'~~ dO ]4, v <  v~ 
3 [ ~ 2 o  2s* - vg(O) 

3 ~ [ 1 (  ~ e'"odo 1" 
7 . o _  ~ LNJo e(o5 -No)J 

+ ~ 1 - 2-g~a0 [g(0) - g(0)] 2' v >/vc 
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